\qquad

Quiz 4

Question 1. (10 pts)
Determine whether the following statements are true or false. If false, explain why.
(a) If a vector space V has dimension n, then any $n+1$ vectors in V must span V.

Solution: False. For example, choose the same vector $n+1$ times. Then they certainly do not span V, in the case when $n>1$.
(b) Let V be a vector space of dimension n. Suppose $\left\{u_{1}, \cdots, u_{m}\right\}$ is linearly independent. Then $m \leq n$.

Solution: True.
(c) Let V be a vector space. If $\left\{v_{1}, \cdots, v_{k}\right\}$ spans V, then there is a subset of $\left\{v_{1}, \cdots, v_{k}\right\}$ that forms a basis of V.

Solution: True.
(d) The polynomials $u_{1}=2, u_{2}=(t-2), u_{3}=(t-2)^{2}$ form a basis of $\mathbf{P}_{2}(t)$.

Solution: True.
(e) Given an 3×4 matrix A, suppose $\operatorname{rank}(A)=2$. Then the rows of A are linearly dependent.

Solution: True.

Question 2. (10 pts)

Given

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 2 & 1 \\
3 & 6 & 9 & 6 & 3 \\
1 & 2 & 4 & 1 & 2 \\
2 & 4 & 9 & 1 & 2
\end{array}\right]
$$

(a) (5 pts) Find a basis for the row space of A.

Solution: Use Gaussian elimination to find an echelon matrix of A

$$
\left[\begin{array}{ccccc}
1 & 2 & 3 & 2 & 1 \\
0 & 0 & 3 & -3 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So $u_{1}=(1,2,3,2,1), u_{2}=(0,0,3,-3,0)$ and $u_{3}=(0,0,0,0,1)$ form a basis of the row space of A.
(b) (5 pts) Find a basis for the column space of A.

Solution: Use the same echelon matrix above. Then we see that

$$
v_{1}=\left[\begin{array}{l}
1 \\
3 \\
1 \\
2
\end{array}\right], v_{2}=\left[\begin{array}{l}
3 \\
9 \\
4 \\
9
\end{array}\right], v_{3}=\left[\begin{array}{l}
1 \\
3 \\
2 \\
2
\end{array}\right]
$$

form a basis of the column space of A.

